The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate

نویسندگان

  • Cheon-Gyu Park
  • Yongsoo Park
  • Byung-Chang Suh
چکیده

The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transduction of voltage and Ca2+ signals by Slo1 BK channels.

Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors s...

متن کامل

Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca channels

The β-subunits of voltage-gated Ca (CaV) channels regulate the functional expression and several biophysical properties of highvoltage–activated CaV channels. We find that CaV β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). When CaV1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they ...

متن کامل

Ca 2 + Channel Regulation by a Conserved β Subunit Domain

The β subunit is a cytoplasmic component that normalizes the current amplitude, kinetics, and voltage dependence of voltage-gated Ca2+ channels. Here, we identify a 30 amino acid domain of the β subunit that is sufficient to induce a stimulation and shift in the voltage dependence of activation of the Ca2+ channel currents. This domain is located at the amino terminus of the second region of hi...

متن کامل

KCNE3 acts by promoting voltage sensor activation in KCNQ1.

KCNE β-subunits assemble with and modulate the properties of voltage-gated K(+) channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K(+) channels important for K(+) and Cl(-) secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely und...

متن کامل

Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit

G protein-coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca(2+), and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca(2+) (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2017